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Towards an Objective Physics of Bell Non-Locality: Palatial Twistor Theory

by Roger Penrose
Mathematical Institute, Oxford

Abstract In 1964, John Stewart Bell famously demonstrated that the laws of standard quantum 
mechanics demand a physical world that cannot be described entirely according to local laws. The 
present article argues that this non-locality must be gravitationally related, as it comes about only with 
quantum state reduction, this being claimed a gravitational effect. A new formalism for curved space-
times, palatial twistor theory is outlined, which appears now to be able to accommodate gravitation
fully, providing a non-local description of the physical world.

1. Non-locality and quantum state reduction

Whereas quantum entanglement is a normal consequence of the unitary 
(Schrödinger) evolution U , of a multi-particle quantum system, this evolution is 
nevertheless local in the sense that it is described as the continuous (local) evolution
in the relevant configuration space. What the EPR situations considered by John 
Stewart Bell [1] demonstrated was than when widely separated quantum 
measurements, of appropriate kinds, are performed on such entangled states (a current 
record for distance separation being 143km, for entangled photon pairs [2]), the 
results of such measurements (which may be probabilistic or of a yes/no character) 
cannot be mimicked by any local realistic model. Thus, in trying to propose a 
mathematical modelling of what is going on realistically in the physical world, one
would need to face up to the actual physical process involved in quantum state
reduction R , which is an essential feature of quantum measurement.

For many years, my own position on the state-reduction issue has been that R
would have to involve a fundamental mathematical extension of current quantum 
theory, giving a description of something objectively taking place “out there” in the 
physical world (OR: objective reduction), rather than R being the effect of some 
kind of “interpretation” of the standard unitary quantum formalism. Moreover, the 
extended theory should be able to describe the one physical world that we all 
experience, rather than some sort of co-existing superposition of vast numbers of 
alternatives. To be more specific about my own viewpoint, it has long been my
position that such necessary deviation from unitarity U in this OR activity would 
result from a correct melding of the quantum formalism with that of general 
relativity. Unlike standard attempts at a quantum gravity theory, this would entail 
some accommodation on the part of both quantum mechanics and gravitational 
theory, involving some kind of “gravitization” of quantum mechanics [3], in addition 
to the conventional viewpoint of there being some needed quantum modification of 
the classical picture of space-time.

In my opinion, there are several reasons for believing that standard U-
evolution cannot remain completely true when the effects of Einstein’s general 
relativity become significantly involved. For example, there is the so-called “black-
hole information paradox”. According to Hawking’s 1976 analysis [4], information 
would be lost as an aspect of black-hole evaporation, this entailing a deviation from 
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standard unitary evolution U . Although Hawking subsequently reversed his opinion 
(see [5]), I believe that his original argument is the more cogent one (and, in my view,
information loss is also a clear implication of an examination of the appropriate
conformal diagrams; see [6], especially Fig.30.14), so that U in must in any case be 
violated in such extreme gravitational situations. Otherwise, one is led to unpleasant 
and improbable-sounding conclusions such as “firewalls” instead of horizons [7].
Moreover, the very curious way in which the Big Bang must have been an 
extraordinarily special initial state, as implied by the second law of thermodynamics, 
also sheds doubt on the conventional presumption that that event can have been the 
result of a standard quantum-gravity type evolution, since gravitational degrees of 
freedom were enormously suppressed at the Big Bang, this applying only to
gravitation, the matter and radiation degrees of freedom having apparently been
almost completely thermalized (see [6], Chapter 27).

In addition to these very, large-scale phenomena, fundamental issues are 
raised when quantum superpositions of even very tiny gravitational fields are 
involved [8], [9]. It turns out that Einstein’s foundational principle of equivalence
(between a local gravitational field and an acceleration) is in conflict with the 
standard linear U-evolution even in the case of the Newtonian limit of general 
relativity. For it can be shown that such superpositions are, strictly speaking illegal,
according to the quantum formalism, as the accelerating frames relevant to the two
components of such a superposition refer to different vacua [3]. The specific type of 
scheme that I have been promoting, in order to handle this conflict, suggests a
particular scale for an OR-type process. All this agrees, fairly closely, with an earlier 
proposal introduced by Lajos Diósi [10] (see also [11]) but now with clear 
motivations from foundational principles of general relativity, most particularly the 
Galilean limit of the equivalence principle (see [3]). According to this proposal, a
macroscopic quantum superposition between two quantum states A and B, in the 
(Newtonian) c=∞ limit would undergo a spontaneous reduction (OR) of the 
superposed state to one of A or B, in a timescale τ=~�/EG, where EG is the 
gravitational self-energy of the mass distribution (positive in some regions and 
negative in others) of the difference between the distributions in A and B separately 
[3], [8], [9]. Here we assume that each of A and B would, on its own, have been
completely stationary. In space-time terms, we have a quantum superposition of two 
different space-time geometries that persists only for a time ~τ, where the total space-
time separation (superposition) period, before reduction takes place, would be of 
order unity, in Planckian units [3], the separation of the space-time geometries being 
given in terms of a symplectic measure that can be explicitly given in the linearized 
limit [8].

2. Twistor non-locality and its basic algebra

Among the principle motivational ideas behind the original introduction of
twistor theory [12] was the feeling that one should seek a description of the physical 
world that would be fundamentally non-local. I had hit upon twistor theory’s initial
notions in late 1963, before I had had the advantage of knowing John Bell’s
remarkable demonstration that the effects of conventional quantum mechanics cannot 
actually be explained in terms of a local realistic model. Yet, I had already felt that 
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there were some reasonably persuasive indications from the earlier work of Einstein, 
Podolski and Rosen (EPR) [13], and David Bohm [14], that some kind of spatial non-
locality must be true of the real world, although we were certainly not forced into this 
viewpoint until Bell’s famous result appeared in 1964.

The kind of non-locality exhibited in the original twistor viewpoint was,
however, rather limited. The idea was that space-time points should not be thought of 
as primitive entities, but secondary to the non-local notion of a space-time light ray—
henceforth referred to simply a ray—namely a complete null geodesic in the
classically viewed space-time manifold � . Clearly a ray is a non-local entity, 
representing the entire history of an idealized freely moving classical massless (and 
spinless) particle. The 5-real-dimensional space �� of all such rays in � is
Hausdorff, provided that we can assume that � is globally hyperbolic [15]. Any 
point r of � may be identified within �� (with perhaps some ambiguity, for certain 
very special � s) as the sphere R of rays that pass through r. This S2 (basically the 
“celestial sphere” of an observe at r) has the structure of a conformal sphere, and one 
of the defining aspects of twistor theory was to try to regard R as a Riemann sphere
(complex projective line) within the structure of ��.

However, for a general � , the real 5-manifold �� does not possess anything 
directly of the nature of the complex structure that would enable such an interpretation 
of the 2-sphere R to be inherited from an ambient complex structure, of some sort, 
within �� itself. Nevertheless, the 6-manifold �� of momentum-scaled rays is 
actually a symplectic manifold, where a momentum scaling assigns a (space-time)
null convector p at each point of the ray, written in index form as pa, which points
along the ray in the future direction and is parallel-propagated along it. The
symplectic structure of �� is defined by the closed symplectic 2-form Σ , and a
natural symplectic potential 1-form Φ , given by

Σ = dpa∧dxa = dΦ ,    where   Φ = pa dxa,

(abstract indices being used throughout [16]). In conventional coordinate notation, 
“dxa” would simply stand for the coordinate 1-form basis; in abstract indices dxa is
just a “Kronecker delta” translating the abstract index on “pa” to a conventional 1-
form notation. We shall be seeing in §3 that, in some sense, it is the process of 
canonical quantization (in the guise of geometric quantization [17]), when applied to 
the symplectic structure Σ (via its associated Poisson-bracket structure Σ–1), that gives 
quantum significance to this Riemann sphere interpretation. But we shall find that 
there are considerable subtleties about such a quantization procedure which, as it turns 
out, cannot be applied globally in the appropriate way to the whole 6-space ��,
when � is conformally curved. The global inconsistency of this quantization process 
is the key to a new notion in twistor theory known as palatial twistor theory [18],
which will be described in outline in §6 and which offers some hope for a 
fundamentally non-local description of general curved 4-dimensional space-times.

When � is conformally flat, and most particularly in the case � =� where �
is Minkowski 4-space, we do not need to appeal to quantization procedures, and we 
find that the required complex structure is already provided by classical theory, when 
looked at in the appropriate way. This interpretation is explicit, as we shall see below, 
and (at least locally) �� can then be identified as a 5-dimensional real hypersurface
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�� in a complex space �� (which is a complex projective 3-space, ��3) referred to 
as projective twistor space. Thus, �� becomes what is referred to as a CR-manifold
(Cauchy-Riemann or complex-real manifold [19]).

The real 5-space �� divides �� into two halves ��+ and ��–. In each case, 
the prefix “�” refers to “projective” (i.e. all non-zero complex multiples being 
projected to a single point), and there is a non-projective version, ��������	�
�, � , �+,
and �– of each (see Fig.1). The space �, referred to simply as “twistor space” (or
sometimes as “non-projective twistor space”) is a 4-dimensional complex vector 
space (zero included) with pseudo-Hermitian metric form, of split signature (+,+,–,–).
The sub-regions �+, �–, and �, of �, are defined, respectively, by the metric form 
taking positive, negative and zero values. A twistor Z, sometimes written in abstract-
index form as Zα is an element of �, and in standard coordinates (Z0,Z1,Z2,Z3) for 𝕋,
the metric form is

||Z|| = Z0
�� + Z1

�� + Z2
�� + Z3

�� = Z��� = Z��

where the complex conjugate � of the twistor Z is a dual twistor, i.e. element of the 
dual twistor space �*, and written in abstract-index form as �α, and in standard 
coordinates, its components are (�0,�1,�2,�3) = (��,��,��,��).

If ||Z||=0, we call Z a null twistor, and it represents a ray in �. To see this 
explicitly, we need the fundamental incidence relation between � and � given by

��

��
= �

�

� � � � � ��

� � �� � � �
��

��

where (t,x,y,z) are standard Minkowski space-time coordinates for � (with c=1) for a
point r, either in � or its complexification �𝕄. When Z is a null twistor, the real 
points r which are incident with Z (i.e. whose coordinates satisfy the incidence 
relation with Z�) are simply the points that constitute a ray z in � (or at infinity, in the 
conformal compctification �# of �, if  Z2=Z3=0). When Z is not null, then there are
no real points incident with Z, but there are complex solutions for (t,x,y,z), giving 
points of ��. We may see, from the incidence relation, that the rays determined by 
the null twistors Y and Z intersect (possibly at infinity, in��#), if and only if ��Y
(=��Y�) vanishes. If we fix r as a point of ��, then the solutions for Z of the 
incidence relation give us a complex projective line (a Riemann sphere) in the 
projective 3-space ��. If r is a real point (point of �, or even of �#), then this 
Riemann sphere lies in ��, in accordance with the above comments concerning ��.
For more details, see [20], [21], [22].

3. Spinor parts and physical interpretation of a twistor

The 4 components of a twistor Z�, in a standard frame, may be identified as 
the pairs of components of two 2-spinors �A and �A´, according to

Z0 = �0, Z1 = �1, Z2 = �0´, Z3 = �A´,
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so we can write

Zα =  (ωA, πA´) and �α =  (�A, �A´)

or more simply Z=(ω,π) and �=(�,�). The incidence relation with a space-time point 
r becomes

ωA = irAA´πA´, which we can write ω = ir•π,

where we are now regarding “r” as standing for the position vector of that point with 
respect to a given origin point O. Under a change of origin O�Q, where qa is the 
position vector ��, so that the position vector r must undergo ra

�ra–qa, the spinor 
parts of Z must accordingly undergo

ωA � ωA – i qAA´πA´, �A´��A´,

this preserving the incidence relation ω=ir•π. For a dual twistor W, with W�=(�A,μA´),
we correspondingly have

�A � �A, μA´ � μA´ + i qAA´��A.

The inner product of a twistor Z=π) with a dual twistor W=(� ,μ) (i.e. W�=(�A,μA´)) is

W•Z = �A ωA + μA´ πA´ =  �•ω + μ•π.

In terms of ω and π, a physical interpretation of a twistor Z=(ω,π), can be 
provided, up to the phase freedom Z�eiθZ (θ real), even in the non-null case. The 
twistor, up to this phase freedom, gives us the 4-momentum p (pa in index form) and 
6-angular momentum Mab of a massless particle with spin: 

pa = πA´�A , Mab =  iω(A�B) εA´B´ – i�(A´π B´) εAB

(where I use abstract indices, so that a=AA´, b=BB´, etc., the skew ε “metric” spinors 
defining the space-time metric via gab=εABεA´B´; see [16] §3.1, [22] §6.3). Provided that 
π≠0, this pa and Mab automatically satisfy all the conditions

pa pa = 0, p0 > 0, M(ab) = 0, �

�
εabcd pbMcd = spa

required for a free massless particle. Conversely, the twistor Z (with �A´≠0) is 
determined, uniquely up to a phase multiplier eiθ, by pa and Mab, subject to these 
conditions. (When π=0, we get a limiting situation, where the particle is at infinity, 
but with a zero momentum and non-zero angular momentum.) We shall be seeing 
shortly that the phase also has a key geometrical role to play in the geometric (pre)-
quantization procedure mentioned in §2, which is relevant to the palatial twistor 
theory sketched in §6.
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The quantity s is the helicity of the particle, i.e. its spin, but with a sign,
positive for right-handed and negative for left-handed. The helicity s finds the very 
simple (and fundamental) twistor expression

2s = �A�A + �A´�
A´ = Z� �� =  ||Z||.

When s=0, the complete interpretation of Z, up to phase, is the momentum-scaled ray 
it determines (possibly at infinity), as given earlier. But when s≠0, there are no such 
real points, and there is no real world-line that can be associated with Z in a Poincaré-
invariant way (although there is a spatially non-local real interpretation that can be 
given in terms of a twisting configuration referred to as a “Robinson congruence” 
[22], §6.2, from which the term “twistor” was originally derived). There is also an 
interpretation of Z in terms of the family of complex points x satisfying the incidence 
relation ω=ix•π, these constituting what is referred to as an �–plane in �� (or ��#, if 
we include points x at complex infinity).

In curved space-time �, these notions are not so well defined. Most 
particularly, the concept of an �–plane disappears for a complexified (real analytic) 
space-time �� for which � is not conformally flat. Nonetheless, we can go some 
small way towards defining a hypothetical twistor space � for � (analogous to �
defined for �), in that the “non-projective” 7-space � can be defined from �����

��������������p–scaling of rays that gave us the 6-space �� of §2 to a “π-scaling”
for rays γ. Thus, the 7-space � is a circle-bundle over �, where the circle is simply 
the phase freedom �A´�eiθ�A´ (θ real) referred to earlier, to give us a �*-family of π-
scaled rays Γ for each ray γ in � , where pa=πA´�A, as above, the 2-spinor πA´ being 
taken parallel-propagated along each γ. Yet, we do not get a canonically defined full 
complex twistor space � for a conformally curved � .

As noted above, this circle bundle is, in fact, just what is needed for the 
procedure of geometric quantization, when applied to the symplectic 6-manifold ��
(see [17]). What is first required for this (in the preliminary procedure of “pre-
quantization”) is a circle-bundle connection for which the curvature is (� times) the 
symplectic 2-form Σ (of §2). This connection is directly given by the 1-form i�Φ ,
where Φ is the symplectic potential referred to in §2. We find that to proceed to a full 
quantization procedure, we run into issues of non-uniqueness, these being actually 
central to the non-locality that comes about in palatial twistor theory, for which a 
tentative description will be given in §6

4. Local twistors and the Einstein Λ-equations

Despite these ambiguities, there is, however, a local notion of a twistor (not
requiring s=0), defined at each point q of any � and which also can be carried over 
to each entire ray γ in � , i.e. to each point of the associated ray space of ��, and 
whence to each point Γ of the π-scaled-ray space �. This provides us with a flat 
twistor space �q, canonically and conformally invariantly defined for each q∈�, and
also such a space��γ, for each γ∈��, where �γ may be interpreted as a kind of 
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complex “pseudo-tangent space” to � at each corresponding point Γ∈�. These are
obtained via the notions of local twistor, and local twistor transport ([22] §6.9).

A local twistor is a quantity Zα=(�A,�A´), defined at a point q of the space-
time � , which transforms as

� A
��� A, �A´ ���A´�+ i�� A Ω–1∇AA´Ω,

under a conformal rescaling of � ’s metric, according to gab�Ω2gab (Ω being a 
smooth positive-valued function on � ). To get an exact correspondence with the 
twistor concept introduced in §2, we must think of � A (and �A´) as not being defined 
with respect to a fixed origin point O, as in §3, but now taken with respect to a
variable point q∈� . Recall that in 𝕄, when the origin O is displaced to a general
point q (with position vector qa with respect to O) in 𝕄, the twistor (� A,�A´) defined 
with respect to O becomes (� A–iqAA´�A´,�A´) with respect to q. The local twistor
perspective on this is that (� A,�A´), defined at O, when carried to q by local twistor 
transport, becomes (� A–iqAA´�A´,�A´) at q. This enables us to extend this concept, in a 
conformally invariant way, to a general � . When � =𝕄 (or, indeed, when � is any 
simply-connected conformally flat space-time) the notion of local twistor transport is 
path-independent, so that the local twistor concept extends to a global one, but this is 
not true in general.

The definition of local twistor transport, along a smooth curve γ in � with 
tangent vector ta, is

ta∇a�
B =  –i tBB´�B´, ta∇a�B´ =  –i tAA´ΡAA´BB´ �

B,

where

Ρab =  �
��

Rgab – �

�
Rab,   with   Rac =  Rabc

b.

(sign conventions as in [16], [22]). Taking γ to be a ray—which is simply-connected, 
with topology � (by � ’s global hyperbolicity)—we use local twistor transport to 
propagate (ω,π) uniquely all along γ, thereby providing us with our canonical twistor 
space �γ, assigned to γ. Correspondingly, we shall have spaces ��γ, �γ, and ��γ, just
as in §2. When � is conformally flat (and simply-connected), these spaces are all 
independent of the choice of any curve γ connecting a pair of points in � , owing to 
the integrability of local twistor transport, so the local twistor spaces are all 
canonically indentical and may be referred to simply as spaces �, ��, �, and ��,
respectively, but this does not hold if � is conformally curved.

We must raise the question of the relation between each ��γ and the global 
space �� of rays in a general �. Within each �γ, for a ray γ, this ray, when π-scaled
to Γ, can itself be unambiguously represented by (0,πA´) all along γ, this being 
unchanged by local twistor transport along γ (since tAA´∝�AπA´ and πA´πA´=0). When �
is confomally flat (and simply-connected), the integrability of local twistor transport 
allows us to achieve this globally for the whole of ��, where a π-scaled ray η in �
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that meets γ in a point q would be represented at q by the local twistor (0,η A´), in both 
�γ and ��, where η A´ provides the direction and π-scaling for η. In fact the spaces 

�γ–{0} are all canonically isomorphic with each other, and (locally) with � itself, so 
it makes sense to identify �∪{0} with each �γ. (at least locally). However, this close 
association does not apply when � is not confomally flat.

When � is � or de Sitter 4-space � with (positive) cosmological constant Λ
(or anti-de Sitter space if Λ<0), it is confomally flat, and the local twistor spaces can 
all be identified, as can their vector-space tensor algebras. More particularly, they 
have a specific structure defined by anti-symmetric 2-valent twistors referred to as 
infinity twistors [22], which fix the metric structure of the space-time. These are I�β

and I�β, taken to be both complex conjugates and duals of one another:

I�β = ���, I�β = ���,
I�β = �

�
������ ��

��, I�β = �

�
������ ���,

where ����� and ����� are Levi–Civita twistors, fixed by their anti-symmetry and 
ε0123=1=ε0123 in standard twistor coordinates. In standard 2-spinor descriptions (§3),
we have:

I�β =
�

�
��� �

� �����
, I�β =

��� �

�
�

�
�����

.

For de Sitter space �, the infinity twistors provide a complex symplectic 
structure (not to be confused with the real symplectic structure of §2) defined by the 
2-form:

� = I�β dZ�∧dZβ;    d� = 0.

Also there is a symplectic potential 1-form

� = I�β Z�dZβ,      where    �� = d�.

When Λ=0, this symplectic structure becomes degenerate, the matrices for I�β and I�β

becoming singular. When Λ≠0, they are essentially inverses of one another:

I�β �
�� = – �

�
��
�.

but annihilate each other if Λ=0. For given Λ, the structure afforded to the twistor 
space �, by I�β (or equivalently I�β, where������ and ������ are assumed given) will
be called its I-structure (or ��-structure).

A significant feature of local twistor transport is that the satisfaction of 
Einstein’s Λ-vacuuum equations Rac=Λgab is equivalent to the fact that I�β (or I�β) is 
constant under local twistor transport. (See [22] p.376 for the case Λ=0; when Λ≠0 this 
fact can be directly established; see also [23].) Moreover, the local twistors ������ and 



9

������ can be seen to be automatically local-twistor constant, independently of the 
Einstein equations. Accordingly, the Einstein Λ-vacuum equations can be phrased in 
terms of the existence of an I-structure that holds globally for all the local twistor 
spaces �γ for the ray space �.

5. Twistor quantization and cohomological wavefunctions

Up to this point, I have been concerned only with classical twistor theory. For 
the quantized theory, we need to introduce the commutation laws [22] §6.10:

Z� �β – �β Z� = ���
�

and

Z� Z β – Z β Z� =  0, ���β – �β�� =  0,

where now Z��and �� are taken to be linear operators generating a non-commutative
algebra �, acting on some appropriate “ket space” [24]. We should think of that space 
as a quantum state space of some kind, that I shall sometimes refer to as “|…〉”, but it 
is best not to be too specific about this for the time being. (In the language of standard 
quantum mechanics, a ket space may be thought of as a complex linear space with a 
basis that is a “complete set of commuting variables”.) In fact, it will be a key part of 
the arguments in §6 that for conformally curved space-times, the ket space will not be
provided in a globally consistent way, though having a local (but non-unique) 
existence in appropriately defined “sufficiently small” regions of the ray spacer ��.
The proposal, according to palatial twistor theory, is that in the case of a curved �
we obtain an algebra �, that generalizes the role that � plays for � (or for �), where
� is defined completely globally for �, even though there would be no globally 
consistent ket space.

There are, however, issues concerning the nature of � (and certainly of �)
that are not completely resolved at the time of writing. We would certainly require 
that � contain polynomial expressions in Z� and �β, but, as we shall be seeing, 
expressions that are analytic in these quantities must also play a role. In a 
(conformally) curved space-time �, we would have a deformed such algebra � that 
is, in some appropriate local sense, the same as��, but whose global structure would 
encode the entire (conformal) geometry of a given curved space-time �. The algebra 
� itself is to be thought of as, in some sense, the algebra of linear operators acting on
(germs of?) holomorphic entities of some kind defined on �, but the precise notion of 
what is required has not yet become completely clear. In basic terms, � is to be taken 
as the algebra generated by Zα and ∂/∂Zβ, but where infinite series in these (non-
commuting) operators would also need to be considered as belonging to �. This raises 
issues of convergence and locality that will need to be sorted out in due course, but 
for our present purposes I shall ignore these subtleties and merely explain the general 
idea of what is required.

In the case of �, the above commutation laws are almost implied by the 
standard quantum commutators for position and momentum
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pa xb – xbpa =  i����

but there appears to be an additional input related to the issue of helicity. By direct 
calculation, we may verify that the twistor commutation laws reproduce exactly the 
(considerably more complicated-looking) commutation laws for pa and Mab that arise 
from their roles as translation and Lorentz-rotation generators of the Poincaré group.
In this calculation, we take note of the fact that there is no factor-ordering ambiguity 
in the expressions for pa and Mab in terms of the spinor parts of Z� and �� (because of 
the symmetry brackets in the spinor expression for Mab). However, when we examine 
the calculation for obtaining the helicity s, we do not retrieve the classical expression 
2s=Z��� (or 2s=��Z�) but, specifically (writing the helicity operator as s, in bold 
type):

s = �

�
(Z��� + ��Z�).

In analogy with the standard quantum-mechanical procedures, if we wish to 
consider what the wavefunction for a massless particle should be in twistor terms, we 
need to think of functions of Z� that are “independent of �β”. This means “annihilated 
by ∂/∂�β”, in other words holomorphic in Z� (by the Cauchy–Riemann equations). 
Thus, a twistor wavefunction (in the Z-description) must be holomorphic in Z and we 
have the operators representing Z� and ����

�

Z������Z��× , ������� �
�

���
.

We can alternatively consider wavefunctions expressed in terms of the conjugate 
variables � �, which are dual twistors, and re-labelling � � as W�, we have
commutation laws W��

β–�βW�=–���
�, W�Wβ–WβW�=0, ���

β–�β
��=0, leading 

to a dual-twistor W-description of wavefunctions.

For purposes of being definite, I just adopt the Z-description here. It should be 
remarked that, in the Z-description, the above quantization procedure allows the 
removal of all operations that involve �, replacing them completely by operations in 
Z, and thereby providing us with entirely holomorphic descriptions. This will prove to 
be of central importance to the theory.

If we are asking that a wavefunction describe a (massless) particle of definite 
helicity, then we need to put it into an eigenstate of s, which, by the above, is

s =  – �

�
�(Z�

�

���
�+ 2).

This is simply a displaced Euler homogeneity operator Z�
�

���
so that for a helicity 

eigenstate, with eigenvalue s, we need a twistor wavefunction f(Z) that is not only 
holomorphic but also homogeneous of degree

n = –2s – 2
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where, for convenience, I henceforth choose �=1. Then 2s is an integer (odd for a 
fermion and even for a boson).

We need to see the relation between such a twistor wavefunction and the
space-time description, in terms of the zero-mass field equations in flat space-time �
—or in a conformally flat �—for each helicity s. These field equations are expressed 
in the 2-spinor form

∇AA´ψAB…E = 0, or ψ = 0,    or ∇AA´�A´B´…E´ = 0,

for the integer 2s satisfying s<0, s=0, or s>0, respectively, where we have total 
symmetry for each of the |2s|-index quantities

ψAB…E = ψ(AB…E), �A´B´…E´ = �(A´B´…E´).

These equations give the spinor form of (the anti-self-dual and self-dual parts of) the
free Maxwell equations (if |s|=1) and of the source-free linearized free gravitational 
field (if |s|=2).

The required relation between f(Z) and the appropriate ψ (or �) can be
achieved by a simple contour integral expression (see [25] and [22] §6.10), where the 
contour lies within the Riemann sphere R, representing a point r of complex 
Minkowski space ��, R being the locus of projective twistors �Z that are incident 
(ω=ir•π) with r, where Z=(ω,π). A free wavefunction ψ(r) (or �(r)), should be of 
positive frequency, and this is achieved if ψ(r) (or �(r)) remains holomorphic when 
we allow r to be any complex point lying in the forward tube �+. This is that part of 
�� consisting of points whose imaginary parts are timelike past-pointing), and is
represented, in projective twistor space ��, by the lines R lying entirely in ��+. See
Fig.2 for a picture of this arrangement (the shaded region indicating where f is free of 
singularities).

The details are best not entered into here, but what we find is that the twistor 
wavefunction f is not really to be thought of as “just a function” in the ordinary sense, 
but as a representative of an element of 1st cohomology (actually 1st sheaf
cohomology) of the space ��+. It is at this stage that we begin to realize the deeper 
and more subtle aspects of the non-locality of the twistor picture of physical reality, 
this non-locality finding expression in the essential non-locality of cohomology [26].
A good intuitive way of appreciating the idea of 1st cohomology is to contemplate the 
“impossible tribar” depicted in Fig.3. Here we have a picture that for each local 
region, there is an interpretation provided, of a 3-dimensional structure that is 
unambiguous, except for an uncertainty as to its distance from the viewer’s eye. As 
we follow around the triangular shape, our interpretation remains consistent until we 
return to our starting point, only to find that it has actually become inconsistent! The 
element of 1st cohomology that is expressed by the picture is the measure of this 
global inconsistency [27], where locally there is no inconsistency, but merely a mild-
seeming ambiguity of the distance from the viewer’s eye of the pictured object.
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In the case of a twistor wavefunction there is an additional subtlety, in that the 
global inconsistency arises from the “rigidity” of holomorphic functions rather than 
that of the solid structures conjured up by the local parts of Fig.3. To be more 
specific, we may think of ��+ as being broken into pieces—and simply the two
overlapping open regions �1 and �2 depicted in Fig.2 will do—which together cover 
the whole of �𝕋+, and where there is a region � of intersection of �1 and �2 which is
where our holomorphic function f is actually defined

�𝕋+ = �1 ∪ �2, ������1 ∩ �2;

(see Fig.2). We can think of this as being analogous to the tribar of Fig.3 by
imagining a splitting of the tribar picture into two overlapping parts, a left-hand one 
(“�1”) and a right-hand one (“�2”) where the (disconnected) overlap region provides 
us with instructions as to how to glue the two parts together. These instructions are 
the analogue of the holomorphic function f, and it is the rigidity of holomorphic 
functions (as expressed in the local uniqueness of analytic continuation) that provides
the analogy with that of the rigid-body structures depicted (locally) in Fig 3.

The non-locality of twistor 1st cohomology that is illustrated here reflects a 
physical non-locality that is exhibited in 1-particle wavefunctions that had worried 
Einstein, way back in 1927 (Einstein’s boxes; see [28]), though much milder and 
elementary than the 2-particle non-locality that Bell established in 1964. We may 
imagine that a photon source, aimed at a photo-sensitive screen some distance away,
emits a single photon towards the screen, the state of this photon being described by a 
wavefunction ψ. As soon as the screen registers reception of the photon at any one of 
its points—say x—this detection event instantly forbids every other point of the 
screen from detecting the photon, despite the fact that at another point y on the screen,
the wavefunction itself may have had, a moment previously, a ψ-value comparable 
with that at x. The probability of detection at each point of the screen is determined in 
the same way (by some form of Born rule), but as the detection probability just refers 
to a single particle, it cannot be detected at more than one point. It is a global thing, 
quite unlike the situation with a water wave, say, whose effect on each point on a cliff 
face is locally determined, being independent of its effect at other points on the cliff.

Of course, taken on its own, such a situation can be explained in accordance 
with the point of view that the wavefunction is simply a kind of “probability wave” 
with no actual reality attached to it. This simple picture cannot be maintained,
however, when interference effects are involved, and for such reasons I would myself 
insist on attributing some measure of physical reality to the wavefunction. Yet, this 
“reality” has to acquire some kind of non-locality, as this simple example 
demonstrates.

For an extreme illustration of this, we may imagine that an astronomer detects 
a photon from a galaxy some millions of light years away. Prior to detection, one 
would consider that the photon’s wavefunction had spread, enormously diluted, over a 
region several millions of light years across. Yet, the astronomer’s detection of the 
photon at once forbids its detection at any other place in that vast region (where I here 
ignore complicating matters of Bose statistics and quantum field theory). The twistor 
picture of this non-locality, is like that of a vast impossible tribar, whose impossibility 
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is removed once it is broken at any one place, this “breaking” being the analogy of a 
quantum state reduction (R) occurring at that place.

Of course, as we know, a “local-realistic” model (i.e. a “Bertelmans’s socks”
type of explanation, see [29]) can easily be provided for this kind of single-particle 
non-locality, and we need to pass to multi-particle situations in order to provide 
instances of genuine Bell non-locality. The twistor description of an n-particle 
wavefunction would require nth cohomology, so the twistor picture becomes more 
complicated (and not yet adequately discussed, as far as I am aware). I am more 
concerned, in this article, with how one might attempt to address, in twistor terms, the
issue of the state reduction R that occurs when a measurement is applied to a 
(twistor) wavefunction. Since, according to §1, I adopt the view that this is an 
objective physical process (OR) which is gravitational in nature, we shall need to see 
how genuine curved-space geometry might be incorporated into the twistor 
formalism. The basic ideas for this are outlined in the next section, and we see a new 
kind of non-locality arising in the twistor picture.

6. Palatial twistor theory

Before turning to the proposal of “palatial twistor theory” for a general curved 
space-time �, it will be helpful to give a brief outline of the earlier procedure 
referred to as the “non-linear graviton” construction [30] (and see also [31] for the 
case of non-zero Λ), whereby the general (complex) solution of Einstein’s Λ-vacuum 
equations, in the anti-self-dual case, may be expressed in twistor terms. The gist of 
this construction can be gleaned from Fig.2, where we think now of the two 
overlapping open regions �1 and �2 as being separate portions of twistor space that 
are to be “glued together” over the shaded intersection region. Now, rather than 
thinking of f as just being “painted on” the overlap region �we can think of f as
playing a more active role, whereby it effects a sliding of one patch over the other, so 
as to obtain some form of “curved” twistor space, achieved by a process of 
“coordinate patching”. In the infinitesimal case, this can be expressed as a shift in �1

as matched to �2, along the vector field:

I�β
�
��

���
�
�

���
�,�

�

(defined on �) where f is homogenous of degree 2 (corresponding to helicity s=–2).
Exponentiating this, we get a genuinely curved twistor space of required type (with a 
globally defined I-structure). The points of the complex 4-manifold � arise as 
completed Riemann spheres, that are deformed versions of the line R, in Fig.2. A 
remarkable theorem due to Kodaira [32] tells us that such deformed Rs do, indeed 
form a complex 4-parameter family (at least for deformations that are not too large). It 
is a striking fact that the non-trivial local structure of the resulting � , which involves 
a non-zero anti-self-dual Weyl curvature (ΨABCD; see [16], [30]), arises from global
structure of the deformed twistor space �, itself having merely a local I-structure,
identical with that of��, or of � (with the correponding Λ).
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The idea behind palatial twistor theory [18] is that we try to mimic this “non-
linear-graviton” procedure, but where instead of matching the complex-manifold
structure of �1 to that of �2 in order to get a curved twistor space �, we try to match 
their respective twistor quantum algebras �� and �� to give a “curved” quantum 
algebra �, but without involving actual “spaces”, like the regions of �1 and �2, or �.
Had we maintained a notion of a twistor manifold, for the regions �1, �2, this would
force us into the left-handed space-time framework, rather than allowing both 
helicities. Matching the twistor algebras rather than the twistor spaces of the non-
linear graviton construction enables us to resolve a long-standing (~40-year-old) 
conundrum known as the “googly problem” (see [22], footnote on p.164). That
problem demands finding a suitable procedure which would yield (complex) space-
times possessing self-dual conformal curvature (�A´B´C´D´), i.e. right-handed (s=2), for 
which the linearized version would require a twistor function f of the awkward-
looking homogeneity degree –6, which had proved very problematic. Of course, that 
could be addressed if the dual (W-description) were adopted, but then the same 
problem would arise for the anti-self dual part, which doesn’t help, as a single 
formalism has to be found, able to cope with both parts at once. This is what palatial 
twistor theory is proposed to achieve.

Since these twistor quantum algebras are non-commutative, we are led into the 
kind of picture provided by the ideas of non-commutative geometry [33], and ordinary
“spaces” like �1 and �2 are not determined uniquely by such algebras. Nevertheless,
we need some notion of locality (or “topology”) in order to express the concept of 
building up the entire structure out of “flat” pieces. This is achieved by appealing to 
the light-ray spaces ��, ��, and �, described in §2 and §3. We can imagine that 
�� is divided into, say, n partially overlapping regions ��1, ��2, …, ��n,
providing an open covering (�1,�2,…,�n) of �. The idea is that if the individual 
spaces �k, together with their intersections, are, in an appropriate sense, “simple”,
then they can be (non-canonically) assigned respective “flat” twistor quantum 
algebras ��, ��, .., ��. On the various overlaps �j∪�k the algebras needs to match 
appropriately, but the resulting “patched” algebra will not be “flat” in its total 
structure if � is conformally curved.

I need to explain some of these terms a little more fully. Basically, the algebra 
will be considered to be flat if it has a consistent “ket space” |…〉 , and the idea is to 
find such a flat algebra for any “simple” region � in �. Here, an open subregion of 
�is called simple if it is topologically and holomorphically trivial—by which I mean 
that it has Euclidean topology and is in some appropriate sense convex. To construct a 
(flat) twistor quantum algebra suitably assigned to any such simple region, we first 
consider the twistor space �γ, for each ray γ in �� (from local twistor transport §4),
and then construct the twistor quantum algebra �� from each, in the standard way (as 
in §4). We have no reason to expect a canonical isomorphism between these algebras 
for different rays γ in �� when � is conformally curved. However, it is to be
expected that we can, for a simple region � in �, deform, continuously and 
holomorphically, the various ��s at the different points of �, so as to obtain a

holomorphic “trivialization” of the bundle of �γs over �, thereby obtaining (by no 
means uniquely) a single algebra ��, continuously and holomorphically isomorphic 
to each �� for γ∈�� (and therefore isomorphic to �) consistently over the whole of 
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�. This is to be expected because the relation between the various local twistor spaces 
�γ and their immediate neighbours (i.e. �γ´, where γ´ is neighbouring to γ) becomes a 
holomorphic one between the corresponding ��s, by virtue of the holomorphic nature 
of the twisor quantization process (and by virtue of the pre-quantization connection of 
§3. This notion of “consistency” (though still not fully understood in mathematical 
details) demands that there be a consistent “ket-space” |…〉 for ��, isomorphic to �,
over each region �.

Each such flat �� is to be thought of in the spirit of a “coordinate patch”. 
Over the intersection ��∩�� of two simple regions �� and �� we require consistency 
of the algebras ��� and ��� in the sense of having a continuous and holomorphic 
deformation of one to the other, retaining a consistent ket space on the intersection,
but we do not require a common ket-space to be present for the whole of their union
��∪��. Such consistency would not generally be possible globally. Instead, our fully 
“patched together” algebra � would not have a consistent ket space (unless � is
conformally flat). The idea would be that a measure of the departure from global 
consistency of a ket space, over the whole of �, would be something of the nature of 
a (non-linear) 1st cohomology element (as with the inconsistency expressed in Fig.3)
and which, in space-time terms, would express the presence of a non-zero Weyl 
conformal tensor, i.e. conformal curvature for �.

We need to be able to identify the points of � in terms of the algebra �.
These have to arise by non-local considerations (as was the case with the non-linear 
graviton construction). Corresponding to any particular point r of � there would be a 
locus R in �� representing r, namely the family of all rays through r, which is 
topologically S2. The idea is that the consistency (i.e. trivialization, in the above 
strong sense of having a consistent ket-space) of the��-bundle over R is what 
determines such an S2 locus as representing a point of �. For this to work, as a 
sufficiently restrictive proposal for locating �’s points in terms of such a twistorial 
construction, we need to establish the validity of various technical issues that have 
been skimmed over in the previous two paragraphs. Moreover, to ensure that the 
construction outlined above actually provides us with a 4-dimensional �, we would
certainly need some suitable generalization of the Kodaira theorem [32] that was
central to the non-linear graviton construction.

None of this yet encodes the formulation of Einstein’s equations. It is perhaps 
remarkable, therefore, to find that Einstein’s Λ-vacuum equations are themselves very 
simply encoded into this structure. For these equations provide precisely the 
necessary and sufficient condition that the local twistor spaces �� possess an I-
structure (for given Λ), so all we now require that is that the needed continuous and 
holomorphic deformations of the �� algebras preserve their nature as algebras on ��
with this I-structure. If all these procedures (or something like them) indeed work as 
intended (with generalizations to the Yang–Mills equations and other aspects of 
physics), then there would appear to be significant openings for twistor theory in a
non-local basic physics, not envisaged before.

Nevertheless, we have still not addressed the issue raised in §1 of the need for 
a (non-local) physics capable of describing the R-process as a realistic gravitational 



16

phenomenon. Indeed, the formalism as so far described cannot yet be taken as a 
“quantum-gravity” theory if only for the simple reason that no place has been found 
for the Planck length lP or equivalently the Planck time tP. A tempting way to 
incorporate such dimensional quantities might be to modify the commutators of §5 as 
follows:

Z� �β – �β Z� = ���
�

and

Z� Z β – Z β Z� = ε I�β, ���β – �β�� = � I�β, ,

where ε is a very small (complex?) constant related to the Planck length. These 
commutator equations have not yet been significantly explored, and it cannot yet be 
said whether or not they supply anything of the kind of “quantum gravity” framework
that might be needed.
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Figure captions

Fig.1 A positive-norm twistor Z lies in the portion �+ of non-projective twistor 
vector space �, this being is the disjoint union of �+, �, and �–. The projective 
versions of these three spaces are ��+, ��, and ��–, respectively.

Fig.2 The contour integral arrangement for a twistor wavefunction. The two open 
sets �1 and �2 (regions of ��+ depicted above those letters) together cover the 
whole of ��+, the function f being defined on their intersection. The complex 
point r is represented by a Riemann sphere (complex projective line) R in ��+.

Fig.3 The “impossible tribar” illustrates 1st cohomology. This arises from a local 
ambiguity in the distance of the depicted object from the viewer.


