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Abstract: The imaginary 𝑖 in the formulation of the quantum mechanics is accepted within the 

axioms of the quantum mechanics theory, and, thus, there is no need for an explanation of its 

origin. Since 2012, in a non-quantum mechanics project, there has been an attempt to 

complexify a real function and build an analogy for relativistic quantum mechanics. In that 

theoretical attempt, a partial observation technique is proposed as one of the reasons behind 

the appearance of the imaginary 𝑖 . The present article throws light on that attempt of 

complexification and tries to explain the logic of physics behind the complex phase factor. This 

physical process of partial observation acts as a process of physicalization of a virtual model. 

According to the positive results of analogy, the appeared imaginary 𝑖 in quantum mechanics 

formulation may be related to a partial observation case as well. 
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1. Introduction  

The dealings with the complex mathematical form is well known in classical physics. 

For example, the main use of the complex traveling wave in classical physics and engineering 

is to simplify the calculations using sinusoidal varying quantities. In these applications, the 

physical quantities are obtained by considering the real part, whereas the imaginary part is left 

out. In those applications, the complex traveling waveform is merely an optional mathematical 

technique. 

The case is quite different in quantum mechanics. In 1925, Heisenberg, Born, and 

Jordan proposed the matrix mechanics (Heisenberg 1925; Born 1925; Born 1926). The 

imaginary 𝑖  entered quantum physics in 1925 through these works. Heisenberg (1925) 

introduced the complexity by saying: 

 “Along with the frequencies, the amplitudes are necessary for the description of radiation; the 

amplitudes can be regarded as complex vectors (with six independent determining data), and 

they determine polarization and phase.” 
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Then, he started with the real part of the complex number as in classical mechanics. 

In his search for an equation that describes the de Broglie waves, Schrödinger derived 

his equation in 1926 (Schrödinger 1926a, b, c, d, e, f). This attempt has led to what is known 

as wave mechanics. This is the second formulation for quantum mechanics, where the other 

formulation is matrix mechanics. However, the time-dependent Schrödinger equation is a 

second order differential equation with imaginary 𝑖: 

 
𝑖ℏ

𝜕𝜓𝑆

𝜕𝑡
= �̂�

𝜕2𝜓𝑆

𝜕𝑥2
 , 

    (1) 

where, 𝜓𝑆, �̂�, and ℏ are the Schrödinger’s wave function, Hamiltonian, and reduced Planck 

constant, respectively. The solution of this equation for a free particle may have this form: 

 𝜓𝑆 = 𝐴 exp 𝑖 (𝑘 ∙ 𝑥 − 𝜔𝑡) ,     (2) 

where, 𝜔, 𝑘, and 𝐴  are angular frequency, wave vector, and amplitude, respectively. This is 

the Schrödinger’s wave function. The imaginary 𝑖 appeared in Schrödinger formulation again. 

In his work, Schrödinger showed that the wave function is a product of an amplitude factor and 

a complex phase factor (Moore 1993).  For Schrödinger, the wave function represents the 

maximal possible knowledge: 

“Maximal knowledge of a total system does not necessarily include total knowledge of all its 

parts, not even when these are fully separated from each other and at the moment are not 

influencing each other at all” (Schrödinger, 1935). 

The Schrödinger’s wave equation was a non-relativistic form. In 1928, Dirac proposed 

the relativistic form: 

 
𝑖ℏ

𝜕𝜓𝐷

𝜕𝑡
= (𝑐𝛼 ⋅ �̂� + 𝛽𝑚𝑐2)𝜓𝐷, 

    (3) 

where, 𝛽 and 𝛼 are the Dirac matrices, �̂� is the momentum operator, 𝑚 is the rest mass of the 

particle, ℏ is the reduced Planck constant (Dirac constant), 𝜓𝐷 is the Dirac wave function, and 

𝑐 is the light velocity. This relativistic form demonstrates the imaginary 𝑖 as well. 

The trial solution of the Dirac equation consists of a combination of a spinor [𝑢𝐷(𝑥, 𝑡)] 

and a complex phase factor. The two factors (spinor and complex phase) have different 

conceptual roots, but they form a mathematical structure for the solution (𝜓𝐷). For a free 

particle, the trial solution has the form: 

 𝜓𝐷(𝑥, 𝑡) = 𝑢𝐷(𝑥, 𝑡) exp 𝑖(𝑘 ⋅ 𝑥 − 𝜔𝑡),    (4) 

where, 𝜔, 𝑘, and 𝑢𝐷(𝑥, 𝑡) are angular frequency, wave vector, and a Dirac four-component 

spinor, respectively. The structure of the spinor depends on the nature of the Dirac Hamiltonian 

for the studied case. Furthermore, The imaginary 𝑖 appears in the Dirac formulation again. 

The complex phase factor: 

 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑓𝑎𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ≡ exp 𝑖 (𝑘 ∙ 𝑥 − 𝜔𝑡),     (5) 

appeasers in both forms for the wave functions (nonrelativistic equation (3) and the relativistic 

equation (5). 

Dirac described the complex phase “…this phase is all important because it is the 

source of all interference phenomena, but its physical significance is obscure. So the real 

genius of Heisenberg and Schrödinger, you might say, was to discover the existence of 

probability amplitudes containing this phase quantity which is very well hidden in nature and 
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it is because it was so well hidden that people hadn’t thought of quantum mechanics much 

earlier” (Dirac 1972; Yang, 1989).   

 

1.1 The origin of the imaginary 𝑖 

The proposers of both formulations (Matrix and wave mechanics) have not shown a 

clear justification for the appearance of the imaginary 𝑖 in their works. Thus, there are many 

contributions from historians of science, physicists, and mathematicians who have tried to 

provide explanations for it (Baylis 1992; Poojary 2014). As an example, the interesting 

explanation by the theoretical physicist Freeman Dyson in his article “Birds and Frogs” 

mention the technique that has been used by Schrödinger: 

“One of the most profound jokes of nature is the square root of minus one that the physicist 

Erwin Schrödinger put into his wave equation when he invented wave mechanics in 1926. 

Schrödinger was a bird who started from the idea of unifying mechanics with optics. A hundred 

years earlier, Hamilton had unified classical mechanics with ray optics, using the same 

mathematics to describe optical rays and classical particle trajectories. Schrödinger’s idea 

was to extend this unification to wave optics and wave mechanics. Wave optics already existed, 

but wave mechanics did not. Schrödinger had to invent wave mechanics to complete the 

unification. Starting from wave optics as a model, he wrote down a differential equation for a 

mechanical particle, but the equation made no sense. The equation looked like the equation of 

conduction of heat in a continuous medium. Heat conduction has no visible relevance to 

particle mechanics. Schrödinger’s idea seemed to be going nowhere. But then came the 

surprise. Schrödinger put the square root of minus one into the equation, and suddenly it made 

sense. Suddenly it became a wave equation instead of a heat conduction equation. And 

Schrödinger found to his delight that the equation has solutions corresponding to the quantized 

orbits in the Bohr model of the atom. It turns out that the Schrödinger equation describes 

correctly everything we know about the behavior of atoms. It is the basis of all of chemistry 

and most of physics. And that square root of minus one means that nature works with complex 

numbers and not with real numbers. This discovery came as a complete surprise, to 

Schrödinger as well as to everybody else.” (Dyson 2009). 

However, this complex formulation is not that the one that is used in different 

applications in physics, but it is necessary for quantum mechanics formulation (Wigner 1960): 

“Surely to the unpreoccupied mind, complex numbers are far from natural or simple and they 

cannot be suggested by physical observations. Furthermore, the use of complex numbers is in 

this case not a calculational trick of applied mathematics but comes close to being a necessity 

in the formulation of the laws of quantum mechanics.” 

Some physicists have stated the possibility of formulation in quantum mechanics 

without the imaginary 𝑖 and regard that a proof of that complex formulation is not more than a 

mathematical technique. t’ Hooft, in his theory of underlying deterministic quantum mechanics, 

mentioned that: 

“Some critical readers were wondering where the complex numbers in quantum 

mechanics should come from, given the fact that we start off from classical theories. The 

answer is simple: complex numbers are nothing but man-made inventions, just as real numbers 

are. In Hilbert space, they are useful tools whenever we discuss something that is conserved in 

time (such as baryon number), and when we want to diagonalize a Hamiltonian. Note that 
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quantum mechanics can be formulated without complex numbers if we accept that the 

Hamiltonian is an anti-symmetric matrix. But then, its eigen values are imaginary. 

We emphasize that imaginary numbers are primarily used to do mathematics, and for 

that reason, they are indispensable for physics.” (t’ Hooft 2016). 

Therefore, according to him, there is no need to find where the complex number in 

quantum mechanics should come from. This is because it is not more than a useful tool but has 

shown that the imaginary 𝑖 cannot be avoided (at the end of his statement, t’ Hooft said, “But 

then, its eigen values are imaginary”). 

During the 1990s, Hestenes (1966, 1990a, b), with respect to geometric algebra, 

proposed many new concepts related to the complexity of the wave function, such as: 

 The imaginary 𝑖 can be interpreted as a representation of the electron spin. 

 The complex phase factor literally represents a physical rotation, the zitterbewegung 

rotation. 

 The complex phase factor is the main feature, which the Dirac wave function shares with its 

nonrelativistic limit. The Schrödinger wave function inherits the relativistic nature. 

The vital concept presenting in Hestenes’ proposal is the kinematic origin of the complex phase 

factor and the physical rotation (Zitterbewegung). However, there is no experimental evidence 

to support the idea of the kinematic origin. 

 

2. The necessity of 𝒊 explanation  

Quantum mechanics is an axiomatic theory that is based on a number of postulates. The 

postulates form the mathematical foundation of quantum mechanics theory. Historically, John 

von Neumann mentions these postulates first in 1932 (von Neumann 1955). Moreover, these 

postulates have not been derived from simpler previously accepted statements. The list of basic 

axioms of quantum mechanics, as formulated by von Neumann, includes only general 

mathematical formalism of the Hilbert space and its statistical interpretation. 

There is no unanimous agreement on the set of the quantum mechanics postulates. In 

this article, we are interested in one of the postulates that is related to the wave function (Nottale 

and C’el’erier 2007): Complex state function (𝜓). Each physical system is described by a state 

function, which determines all that can be known about the system. The wave function in this 

postulate is not described as a complex function (Hilbert space), but, due to multiplication with 

its conjugate for probability calculation (Born rule), the wave function is a complex function. 

Owing to this axiomatic nature of the wave function (Complex state function), quantum 

physicists (mean stream and others) work with a complex space while classical physicists work 

in real space. It seems that each world (microscopic and macroscopic) has its own space. The 

complex space (Hilbert space) is for microscopic physics, whereas the real space is for 

macroscopic physics. Thus, for the quantum physicist, their complex space is acceptable as a 

normal space. In other words, there is no need to explain the origin of the imaginary 𝑖 as long 

as the physical  concept behind it is present. Therefore, the problem is not with what the theory 

of quantum mechanics involves but with what it leaves out, namely, an adequate ontology of 
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structures on space changing with time (Goldstein 2015). Thus, there is no need to find what 

that imaginary 𝑖 is. 

In quantum physics, regarding this complex space, there are huge controversies about 

the interpretations of the complex wave, complex spin, multi-dimensional wave function, etc. 

Knowing the origin of the complexity of the wave function or the complex phase factor may 

lead to an explanation of what the quantum theory leaves out, namely an adequate ontology of 

structures on space changing with time. Here, one may raise a question: Is there a physics 

beyond the appearance of 𝑖 in quantum mechanics? If there is, can that offer interpretation for 

what the quantum mechanics leaves out? Unfortunately, this question is not desirable by 

quantum physicists. However, there is no logical barrier to prevent one from asking about the 

origin of imaginary 𝑖 . We think that 𝑖 is not just related to a mathematical formulation, but 

there may be physics behind it. If so, the explanation for imaginary 𝑖 may: 

 lead to form a unified foundation of the theory, 

 remove the ambiguity of the complex space, 

 show the relationship between quantum axioms, and 

 show the relationship between quantum mechanics and the special relativity. 

2.1 Is there a way to explain 𝑖 ? 

Is there any physical interpretation of the existence of imaginary 𝑖? To answer this 

question, one may ask as well, is there any process for the complexification to transform the 

real function?  

In an interesting approach, Gao have derived the free Schrödinger equation based on 

an analysis of spacetime translation invariance and relativistic invariance. This “new analysis 

may not only make the Schrödinger equation in quantum mechanics more logical and 

understandable, but also help understand the origin of the complex and multi-dimensional wave 

function.” (Gao, 2015).  

In 2012, a theoretical attempt was made to study the possibility of real vector 

complexification. On the basis of that attempt, an analogy for the relativistic quantum 

mechanics foundation had been obtained. In this article, we have tried to explain a possible 

physical origin of the imaginary 𝑖. 

3. The complexification  

In some mathematical applications such as equation solving, the complexification 

techniques for real vector space may be needed. The complexification techniques are based on 

a mathematical operation of the real vector with the complex numbers (Halmos1958, 1974). 

The complexification of a real vector space ( 𝑉) is a tensor product of 𝑉 with the complex 

numbers (𝐶). Then, any vector 𝑣 in 𝑉𝐶  space becomes: 

𝑣 = 𝑣1 ⊗ 1 +  𝑣2  ⊗ 𝑖,    (6) 

This approach of complexification is a pure mathematical technique, and there is no physical 

concept behind it. Do any physical process lead to complexification? 

The three-wave hypothesis (TWH) had been proposed at the end of the 1970s and 

during the 1980s by Kostro (1978) and Horodecki (1981, 1982, 1983a, b). The concept of TWH 
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was represented as a kinematical system of two perpendicular rolling circles in 2007 (Sanduk 

2007). 

The circle’s rotation can simulate the simple harmonic oscillation. The two 

perpendicular circles (Sanduk 2007) is modified to be two rolling circles in a plane (Fig.1). 

This model can simulate harmonic oscillation and can provide a complex form, if some of the 

parameters are eliminated. This elimination process was defined as a partial observation 

(Sanduk 2012). This approach of the partial observation was developed and used to derive 

analogies for the Dirac equation and the Klein-Gordon equation (Sanduk 2018a, c). A system 

of three rolling circles under the partial observation shows a multi-dimensional complex 

function, which may explain the entanglement concept (Sanduk 2018a). 

However, this technique of complexification is a transformation of a kinematical 

system in real space to a system in complex space and is based on a physical process called the 

partial observation. 

 

3.1 The partial observation technique  

This physical complexification approach is neither in quantum mechanics theory nor in 

quantum mathematical techniques, but it tries to build an analogy for the relativistic quantum 

mechanics to prove the concept of the physical complexification. 

This kinematical model (Sanduk 2007) has been improved as a two rolling circles 

system (gear) in a real plane, as shown in Fig. 1. 

 

 
Fig. 1. The real model. Rolling circles model (Sanduk, 2018 a, b, c). 

 

In this system (Fig.1), the position vector (𝑟) of a point (𝑝) on the first circle is: 

𝑟 = 𝑏 {cos (𝜗 − 𝜙 + 𝛽) ± √−𝑠𝑖𝑛2(𝜗 − 𝜙 + 𝛽) + (
𝑎1

𝑏
)2}. (7) 

From a physical point of view, any object to be observed (lab observation) must be 

resolved optically. The lab observation is based on the optical spatial resolution (the Rayleigh 

criterion). For example, for high resolution, the monochromatic light being used should have a 

wavelength (𝜆) smaller than the object dimension (𝑥) or whose spatial resolution 𝑑𝜆 is: 

𝑑𝜆 ≪ 𝑥,  (8) 
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Thus, for any law of physics, all mentioned quantities must be observable or measurable. For 

example, the length contraction law of the special relativity is: 

 

𝐿 = 𝐿°√1 −
𝑣2

𝑐2
 

  

All the mentioned quantities must be measurable or observable by the lab observer and satisfy 

the above condition. 

However, the kinematical model (Fig.1) is virtual or in mathematical space and time. 

To be a physical model, the used light should satisfy the above condition. Then, equation (7) 

is applicable as it is, where all the quantities can be measured. This condition occurs when the 

system is in the macroscopic scale. In another case, the model is comparable with the used 

wavelength. Here, one may get these conditions: 

𝑎1 ≪ 𝑑𝜆 ≪ 𝑎2, (9a) 

and: 

𝜔1 ≫ 𝜔𝜆 ≫ 𝜔2. (9b) 

The lab observer is supposed to deal with the partial observation of the system, where one may 

say that 𝑎1 = 𝜔2 = 0 (unresolved or unobservable quantities), where the 𝑎2 and 𝜔1 are well 

resolved or measured. The physics behind this problem is the use of monochromatic light, 

which can be applied for the observation of two variables (space and frequency) only, whereas 

the kinetic model has four variables—two for space (𝑎1, 𝑎2) and two for frequency (𝜔1, 𝜔2). 

Therefore, one pair cannot be measured (𝑎1, 𝜔2 ), whereas the other pair can be measured 

(𝑎2, 𝜔1). This is the partial observation. 

Due to these conditions, not all the parameters of equation (7) are observable. Then, it 

may be transformed to (Sanduk 2012, 2018a): 

𝑍(𝑠, 𝑡, 0) = 𝑎2 exp ±𝑖(𝑘2 ∙ 𝑠−𝜔1𝑡). (10) 

In this equation, the appearance of the imaginary 𝑖 is obvious. It is similar to that of 

equation (5). The partial observation technique is a transformation of the system in the real 

plane to a system in the complex plane. This technique has been applied to derive an analogous 

equation for the Dirac equation and the Klein-Gordon equation (Sanduk 2018c). 

 

4. Comments  

 In the physical approach of complexification, the process is an observation process. It 

makes the system (virtual mathematical model without the condition of observation) as 

a physical system (under the conditions of observation). It is a process of 

physicalization or to make the virtual system a physical system and can be observed 

under lab conditions. Therefore, the physical complexification arises due to the 

physicalization process. 
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 The complex space arises due to the partial observation problem. Thus, the complex 

number in quantum mechanics may be related to a physical case and is not just a 

mathematical formulation. 

 The explanation of the physical complexity of the complex phase factor is necessary to 

elucidate the high dimensional complex function (Sanduk 2018a) and may also provide 

a reason for the entanglement. 

 In order to show a relationship of the two rolling circles model under the effect of the 

partial observation technique with the relativistic quantum mechanics, this model was 

used to show an analogy with the relativistic quantum mechanics (Sanduk, 2018 a, b, 

c). Table 1 shows the comparisons between the forms of the relativistic quantum 

mechanics and the obtained forms by the physical complexification technique. It is 

obvious that the agreement is quite good. These comparisons may support the concept 

of physical complexification. 

Table 1. The comparisons (Sanduk 2018a, 2018c). 

Conventional 

definition 

Conventional equations of 

the relativistic quantum 

mechanics 

Analogical model forms 

 

Analogical 

definition 

Dirac wave 

function 
𝜓𝐷 = 𝑢𝐷 exp 𝑖(𝑘 ⋅ 𝑥 − 𝜔𝑡) 𝑍 = 𝑎2𝑚 exp ±𝑖(𝑘2𝑚 ∙ 𝑠−𝜔1𝑚𝑡) 

Z-complex 

vector 

Dirac equation  𝑖
𝜕𝜓

𝜕𝑡
= (−𝑖𝑐𝛼 ⋅ 𝛻 + 𝛽𝜔)𝜓 𝑖

𝜕𝑍

𝜕𝑡
= (−𝑖𝑣𝐴 ⋅ 𝛻 + 𝐵𝜔1𝑚)𝑍 

Complex 

velocity 

equation 

The coefficients 𝛼 and 𝛽 𝐴 and 𝐵 Coefficients 

Property 𝛼𝑖𝛼𝑗 + 𝛼𝑗𝛼𝑖 = 0 𝐴𝜃 ⋅ 𝐴𝜑 + 𝐴𝜑 ⋅ 𝐴𝜃 = 0 Property 

Property 𝛼𝑖𝛼𝑖 + 𝛼𝑖𝛼𝑖 = 2 𝐴𝜃 ⋅ 𝐴𝜃 + 𝐴𝜃 ⋅ 𝐴𝜃 = 2 Property 

Property 𝛼𝑖
2 = 𝛽2 = 1 𝐴2 = 𝐵2 = 1 Property 

Property 𝛼𝑖𝛽 + 𝛽𝛼𝑖 = 0 𝐴𝐵 + 𝐵𝐴 = 0 Property 

Klein-Gordon 

equation 

𝜕2𝜓

𝜕𝑡2
= [𝑐2𝛻2 − 𝜔2]𝜓 

𝜕2𝑍

𝜕𝑡2
= [𝑣2𝛻2 − 𝜔1𝑚

2]𝑍   

Complex 

acceleration 

equation 

 

 The concept of hidden had been proposed during the history of quantum mechanics in 

different forms like hidden variables or hidden medium (De Broglie 1964), and the 

hidden geometry (Hestenes 1966). t' Hooft was against the hidden variables, but he 

proposed the idea of an information loss at the Planck scale. t’ Hooft regards the base 

of the Hilbert space is related to a deep hidden level. In addition to that 't  Hooft used 

in his underlying deterministic model a classical cogwheel model ( Planetary system) 

('t  Hooft 2016).  

In the two circles kinematical model (Fig.1) and the partial observation, one may find 

a similarity with the concepts of hidden, the loss (information), the limit (Plank scale), 

planetary system.  
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 A logical question may arise: Is it possible to detect all the systems by using two light 

beams of different wave length? The logical answer is yes. however, is that possible 

experimentally for a system in microscopic scale? In this kinematical model, the 

photonic nature of the detecting light is not considered. 

 The theoretical predictions are the results of a theoretical model, which is based on the 

observable world. When the observable world is different from the real (actual) world, 

a problem arises. As we mentioned above, the observation problem makes a barrier, 

which will then lead to significant errors and inconsistencies between the experimental 

results and the theoretical predictions. We think the problems, those described by 

Hossenfelder as lost in mathematics (Hossenfelder, 2018a) or as the non-normal 

stagnation in the present phase in the foundations of physics (Hossenfelder, 2018b), are 

related to the observation problem.  
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