*Volume 4, Issue 4, pages 223-234*

Mohammed Sanduk [Show Biography]

In the last article, an approach was developed to form an analogy of the wave function and derive analogies for both the mathematical forms of the Dirac and Klein-Gordon equations. The analogies obtained were the transformations from the classical real model forms to the forms in complex space. The analogous of the Klein-Gordon equation was derived from the analogous Dirac equation as in the case of quantum mechanics. In the present work, the forms of Dirac and Klein-Gordon equations were derived as a direct transformation from the classical model. It was found that the Dirac equation form may be related to a complex velocity equation. The Dirac’s Hamiltonian and coefficients correspond to each other in these analogies. The Klein-Gordon equation form may be related to the complex acceleration equation. The complex acceleration equation can explain the generation of the flat spacetime. Although this approach is classical, it may show a possibility of unifying relativistic quantum mechanics and special relativity in a single model and throw light on the undetectable æther.